Ti-TiC-TiC/DLC gradient nano-composite film on a biomedical NiTi alloy.

نویسندگان

  • Yufeng Zheng
  • Dong Liu
  • Xiliang Liu
  • Li Li
چکیده

Ti-TiC-TiC/diamond-like carbon (DLC) gradient nano-composite films have been prepared on NiTi alloy substrates by the technique of plasma immersion ion implantation and deposition (PIIID) combined with plasma-enhanced chemical vapor deposition (PECVD). The influence of negative bias voltage applied to the substrate (from -100 V to -500 V) on the chemical structure, microstructure, mechanical properties and corrosion resistance was investigated by Raman spectrum, x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), x-ray diffraction (XRD), friction coefficient test, scratch test, nano-indentation test and anodic polarization experiments. The Raman spectrum and XPS results showed that the doped films kept an amorphous DLC structure. TEM observation revealed that nanometer TiC particles were surrounded by the amorphous DLC. With the increase of bias voltage, the ratio of sp(2)/sp(3) first decreased, reaching a minimum value at -200 V, and then increased. The nano-indentation results showed that the hardness of the Ti-TiC-TiC/DLC gradient films reached the maximum value at -200 V when TiC particles reached the maximum content in the films. The friction coefficient test and scratch test indicated that Ti-TiC-TiC/DLC gradient films had a low friction coefficient and high bonding strength with the NiTi substrates. Combined with anodic polarization curves and SEM observation, it was found that the corrosion resistance of the Ti-TiC-TiC/DLC gradient films was much better than that of the bare NiTi alloy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of C2h2 Flow Rate on the Deposition of Ti-tic-tic/dlc Gradient Nano-composite Film on Niti Alloy

Ti-TiC-TiC/DLC gradient nano-composite films have been prepared on the NiTi substrates by the technique of plasma immersion ion implantation and deposition (PIIID) combining with plasmaenhanced chemical vapor deposition (PECVD). The influence of C2H2 flow rate ranging from 30sccm to 50sccm on the chemical structure, microstructure, mechanical properties and corrosion resistance of resulting thi...

متن کامل

Effect of C2H2 Flow Rate on the Deposition of Zr-ZrC-ZrC/DLC Gradient Nano-composite Film on Biomedical NiTi Alloy

F.Q. MA, X.L. LIU, D. LIU, L. LI and Y.F. ZHENG 1 Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China 2 Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, No.5 Yi-He-Yuan Road, Beijing 100871, China a [email protected], b [email protected], c [email protected], d [email protected], e yfz...

متن کامل

Gradient DLC-Based Nanocomposite Coatings as a Solution to Improve Tribological Performance of Aluminum Alloy

The low hardness and poor tribological performance of aluminum alloy as moving component greatly restricts their wide applications in automotive fields. In this letter, an attempt to deposit gradient Ti/TiN/Si/(TiC/a-C:H) multi-layer on aluminum alloy is thus effectively performed by a combined arc ion plating and magnetron sputtering process based on the concept of involving coatings with a fu...

متن کامل

Evaluation of tribological properties of (Ti,Al)CN/DLC composite coatings deposited by cathodic arc method.

In this study, Ti, Al and N doped DLC – referred to here after as “(Ti,Al)CN/DLC composite”- coating and pure diamond-like coating (DLC) were produced by cathodic arc deposition technique and the effects of the coating thickness on their tribological properties were evaluated. The coatings were characterized, using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffrac...

متن کامل

The Flexural Strength and Fracture Toughness of TC4-Based Laminated Composites Reinforced with Ti Aluminide and Carbide

TiC-Ti-Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti₃Al, Ti₂AlC, and Ti₃AlC₂ phases. The carbides particles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical materials

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2008